Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Please read the forum rules before posting.



Check if you are posting in the correct category.



The Off Topic section is not meant for discussing Cookie Clicker.
⚠️ The DashNet forums will be shut down on September 12th 2019.⚠️

Please see here for more information.

The Un-Openable Box (Forum Game)

15455565759

Comments

  • NickCydenNickCyden Posts: 375Member ✭✭

    11/15 "Hey, can someone help me? It's difficult to charge a beam of pure damage..."

    Huh. Never really tried anything other than traditional weapons. Sure, I'll help.

    I pick up a couple brass ingots, and throw them into a forge that just so happened to appear out of nowhere.
    1/?
  • KarciamaKarciama Posts: 70Member ✭✭
    finish the training 6/6
  • wadimwadim Posts: 10Member
    i thow 99999999999999999999999999999999999999999999999 cookies at the box
  • BrainstormBrainstorm Posts: 11,223Member ✭✭✭✭✭

    11/15 "Hey, can someone help me? It's difficult to charge a beam of pure damage..."

    NickCyden said:

    11/15 "Hey, can someone help me? It's difficult to charge a beam of pure damage..."

    Huh. Never really tried anything other than traditional weapons. Sure, I'll help.

    I pick up a couple brass ingots, and throw them into a forge that just so happened to appear out of nowhere.
    1/?
    Karciama said:

    finish the training 6/6

    You have successfully become a frost archwizard!
    wadim said:

    i thow 99999999999999999999999999999999999999999999999 cookies at the box

    The cookies toss the box around, and the huge impulse of cookies throws the cookie away from the area, to candy kingdom.
    +69.1M XP
    LEVEL UP


    Oh no! The candy armies have joined the fight!



    —�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—

    Welcome to the Land of Dreams (??? turns remaining)

    It seems you have appeared in the land of dreams, thanks to one brave and cookielicious individual, a strange land where the sky is light green and the clouds blue, the trees pink, and the dreams come true!
    In this place, you can almost make your dreams true, so even what seems impossible can happen with just a little bit of imagination! Also, you get triple the experience with each move, oh, and, Death despises this place so he can be a little more frustrated around now.
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • YosukeHanamuraYosukeHanamura Posts: 985Member, Helpful ✭✭
    13/15 (received help)
    "Once i fire the beam, it should turn to blue thunders that will deal massive damage to the box!"
    The beam is becoming increasingly noticeable...
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • KarciamaKarciama Posts: 70Member ✭✭
    ask @NickCyden for a staff
  • NickCydenNickCyden Posts: 375Member ✭✭
    Karciama said:

    ask @NickCyden for a staff

    You got it!

    I pour the molten brass into a staff mold.
    2/?
  • ScribbliumScribblium Posts: 772Member ✭✭
    Vær Asirrou!

    A mage appears, cloaked in purple armor.

    (1/???)
    what do i put here
    i bought a fountain pen (lamy safari)
    it's nice.
  • BrainstormBrainstorm Posts: 11,223Member ✭✭✭✭✭

    13/15 (received help)
    "Once i fire the beam, it should turn to blue thunders that will deal massive damage to the box!"
    The beam is becoming increasingly noticeable...

    “Dam.” Says the reaper, smoking a huge joint and puffing a huge cluster of smoke meters against him.
    Karciama said:

    ask NickCyden for a staff

    NickCyden said:

    Karciama said:

    ask NickCyden for a staff

    You got it!

    I pour the molten brass into a staff mold.
    2/?

    Vær Asirrou!

    A mage appears, cloaked in purple armor.

    (1/???)



    —�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—

    Welcome to the Land of Dreams (??? turns remaining)

    It seems you have appeared in the land of dreams, thanks to one brave and cookielicious individual, a strange land where the sky is light green and the clouds blue, the trees pink, and the dreams come true!
    In this place, you can almost make your dreams true, so even what seems impossible can happen with just a little bit of imagination! Also, you get triple the experience with each move, oh, and, Death despises this place so he can be a little more frustrated around now.
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • YosukeHanamuraYosukeHanamura Posts: 985Member, Helpful ✭✭
    14/15
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • KarciamaKarciama Posts: 70Member ✭✭
    wait
  • BrainstormBrainstorm Posts: 11,223Member ✭✭✭✭✭

    14/15

    Karciama said:

    wait

    Waiting in progress
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • YosukeHanamuraYosukeHanamura Posts: 985Member, Helpful ✭✭
    15/15
    I shoot a blue beam upwards, then some blue clouds appear and hit the box with blue thunders, then the beam itself falls and hits the box.
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • texanrattlertexanrattler Posts: 438Member ✭✭
    click
  • ScribbliumScribblium Posts: 772Member ✭✭
    Asyru værja myk!

    The purple mage holds a wooden staff with a strange glowing dagger embedded in it (resembling a spear) which flashes a strange colour.

    (2/???)
    what do i put here
    i bought a fountain pen (lamy safari)
    it's nice.
  • BrainstormBrainstorm Posts: 11,223Member ✭✭✭✭✭
    edited January 21

    15/15
    I shoot a blue beam upwards, then some blue clouds appear and hit the box with blue thunders, then the beam itself falls and hits the box.

    The box suddenly gets tossed away, the entire place rips up and you are back home...

    ... the box is lying on its side which looks just like its top, with a very noticeable scratch. The box effortlessly tries to heal the scratch, but it’s already gone too deep. You can see that it has delved within to reveal a tiny hint of a layer of red box.

    +9.9B XP
    LEVEL UP
    LEVEL UP
    LEVEL UP

    Dealt 0.6% HP

    “Damn!” Shouts Death to the box, observing the scratch. “We need to talk.”

    click

    You click on the box, apparently touching secret button which sends a small explosion, hurting the box.

    +412M XP

    Asyru værja myk!

    The purple mage holds a wooden staff with a strange glowing dagger embedded in it (resembling a spear) which flashes a strange colour.

    (2/???)


    —�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—�—

    “This is not safe anymore, even I am worried now... that was a very risky move, you need to go back.”
    ”I think you’re still frustrated from dream land and need some rest, grim.”

    “I’m not mad, uno, I think Departus was right... your staying here for longer can threaten the existence of existence itself, and I won’t sit here and watch you doom everything that can and can not be called a “thing”, the disappearance of all what’s real and not real...”
    “You’re right...”
    “Oh? You’re convinced?”
    “Yes, I’m convinced... that you won’t sit here and watch this, you’ve stayed for too long and there are a few nonillion souls waiting for their own ascension now, and you’re playing with the balance of the multiverse now. You may resume your work, I can take care of everything from here...”

    “... if this is what you want, then be it! Just know that I won’t hesitate to return when you’ve already lost another quarter of your health, and I won’t be alone, and then you’ll be coming with me against your will!”

    The reaper turns his scythe into a motorbike once more and dashes towards space with a speed so high it almost knocks everyone to the ground.

    “... Against my will? Nothing happens in this multiverse against my will...”
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • YosukeHanamuraYosukeHanamura Posts: 985Member, Helpful ✭✭
    i begin powering up 1/?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • texanrattlertexanrattler Posts: 438Member ✭✭
    hug the box
  • ScribbliumScribblium Posts: 772Member ✭✭
    A dé Asyru!

    The purple mage slashes their staff through the air(?), someone creating a portal(?) to the top of the box

    (3/???)
    what do i put here
    i bought a fountain pen (lamy safari)
    it's nice.
  • KarciamaKarciama Posts: 70Member ✭✭
    wait
  • BrainstormBrainstorm Posts: 11,223Member ✭✭✭✭✭
    edited January 24

    i begin powering up 1/?

    hug the box

    The box didn’t really need it, but you feel kinda better
    +100M XP
    Karciama said:

    wait

    Waiting in progress

    A dé Asyru!

    The purple mage slashes their staff through the air(?), someone creating a portal(?) to the top of the box

    (3/???)

    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • YosukeHanamuraYosukeHanamura Posts: 985Member, Helpful ✭✭
    As you can see, this is my normal state. 2/?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • ScribbliumScribblium Posts: 772Member ✭✭
    A strange energy begins forming out of the tip of the purple mage's staff, now pointed into the portal(?), through which you can see the portal(?)

    4/???
    what do i put here
    i bought a fountain pen (lamy safari)
    it's nice.
  • KarciamaKarciama Posts: 70Member ✭✭
    wait
  • texanrattlertexanrattler Posts: 438Member ✭✭
    Provide emotional support for the box
  • BrainstormBrainstorm Posts: 11,223Member ✭✭✭✭✭

    As you can see, this is my normal state. 2/?

    A strange energy begins forming out of the tip of the purple mage's staff, now pointed into the portal(?), through which you can see the portal(?)

    4/???

    Karciama said:

    wait

    ...ing in progress

    Provide emotional support for the box

    The box thinks you’re nice and wants to be your friend now.

    +80M XP
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • texanrattlertexanrattler Posts: 438Member ✭✭
    accepts friendship and comforts the box
  • KarciamaKarciama Posts: 70Member ✭✭
    stab the box with an magical iceberg
  • YosukeHanamuraYosukeHanamura Posts: 985Member, Helpful ✭✭
    This is a Super Saiyan. 3/?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • ScribbliumScribblium Posts: 772Member ✭✭
    A teardrop shaped collection of purple energy begins to form, visibly shaking. You can see the purple mage's portal begins to look like a mirror.
    what do i put here
    i bought a fountain pen (lamy safari)
    it's nice.
Sign In or Register to comment.