Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Please read the forum rules before posting.



Check if you are posting in the correct category.



The Off Topic section is not meant for discussing Cookie Clicker.

Ask Me Shit Please (AMSP)

¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
Essentially the title.
SL_ND_R: __RS_S__N__
---
SOUNDCLOUD
«13456

Comments

  • ViniVini Member Posts: 3,572 ✭✭✭✭✭
    What, no reference? No mentions of things past? And no joke? What is this, a half-assed AMA?

  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    Vini said:

    What, no reference? No mentions of things past? And no joke? What is this, a half-assed AMA?

    Pretty much, yeah.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • ViniVini Member Posts: 3,572 ✭✭✭✭✭
    Perfect. Been doing any half-assed fun activities lately?

  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    Vini said:

    Perfect. Been doing any half-assed fun activities lately?

    Nothing half-assed. I've been "full-assing" some projects that have been fun to work on, though.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • erdbeereerdbeere Member, Helpful Posts: 3,384 ✭✭✭✭✭
    Shit?
  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    erdbeere said:

    Shit?

    . . .

    Everybody's a comedian anymore.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • PalutenaPalutena Member Posts: 492 ✭✭✭✭✭
    erdbeere said:

    Shit?

    remember kids, swearing makes everything funnier, doesn't it
    b
  • ManiklasManiklas Member Posts: 2,827 ✭✭✭
  • LefianLefian Member Posts: 1,912 ✭✭✭
    Do I get my own AMA?


    Explain yuor name
    mmmmMMMMMMMMMMMMMMMMMMMMMmmmmmmmmmmmmmmmmmmmmmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmmmmmmmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmmmmmmmmmmmmmmmmmmmMMmmmmmmmmmmmmmmmmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmmmmmmmmmmmmmmmmmmmmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmmmmmmmmmmmm
  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    edited February 20
    Lefian said:

    Do I get my own AMA?


    Explain yuor name
    You'd have to make the thread for it, but sure.


    I don't even remember, dude.
    Maniklas said:

    How many horns on a propacorn?

    ???
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • YosukeHanamuraYosukeHanamura Member Posts: 894 ✭✭
    How many holes in a polo?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭

    How many holes in a polo?

    4?

    It's been months since I played the Impossible Quiz.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • Lava_EntityLava_Entity Member Posts: 2,396 ✭✭✭
    what is the legend of my origin
    cease your tomfoolery

  • YosukeHanamuraYosukeHanamura Member Posts: 894 ✭✭

    How many holes in a polo?

    4?

    It's been months since I played the Impossible Quiz.
    NOOOO
    Can a match box?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭

    NOOOO
    Can a match box?

    Yes.

    Please ask serious questions, or at least don't get all of your material from The Impossible Quiz games.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • YosukeHanamuraYosukeHanamura Member Posts: 894 ✭✭
    xd.
    (Actually the answer was "No, but a tin can")
    How can i grasp antimatter without exploding?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • ManiklasManiklas Member Posts: 2,827 ✭✭✭
    @YosukeHanamura you won't explode, what you will do is closer to imploding


    How many horns do you have?
  • YosukeHanamuraYosukeHanamura Member Posts: 894 ✭✭
    Maniklas said:

    @YosukeHanamura you won't explode, what you will do is closer to imploding


    How many horns do you have?

    Oh, but what i mean was, how can i grasp antimatter without being anhihilated?
    In modern physics, antimatter is defined as a material composed of the antiparticle (or "partners") to the corresponding particles of ordinary matter.

    In theory, a particle and its anti-particle have the same mass as one another, but opposite electric charge, and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge. A collision between any particle and its anti-particle partner is known to lead to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle–antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accord with the mass–energy equivalence equation, E = mc2.

    Antimatter particles bind with one another to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is considerable speculation as to why the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.

    Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Individual antimatter particles, however, are commonly produced by particle accelerators and in some types of radioactive decay. The nuclei of antihelium have been artificially produced with difficulty. These are the most complex anti-nuclei so far observed.

    Formally, antimatter particles can be defined by their negative baryon number or lepton number, while "normal" (non-antimatter) matter particles have a positive baryon or lepton number. These two classes of particles are the antiparticle partners of one another.

    The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.

    The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.

    The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. These were discovered by Carl D. Anderson in 1932 and named positrons (a portmanteau of "positive electron"). Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.

    The Feynman–Stueckelberg interpretation states that antimatter and antiparticles are regular particles traveling backward in time.

    There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric charge and spin), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.

    Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.

    Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.

    In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes.

    Scientists claim that antimatter is the costliest material to make. In 2006, Gerald Smith estimated $250 million could produce 10 milligrams of positrons (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.

    Several studies funded by the NASA Institute for Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately, the belts of gas giants, like Jupiter, hopefully at a lower cost per gram.

    Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.

    Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭

    xd.
    (Actually the answer was "No, but a tin can")
    How can i grasp antimatter without exploding?


    Oh, but what i mean was, how can i grasp antimatter without being anhihilated?

    Simple.

    Use the FABULOUS MTT-BRAND ANTIMATTER HANDLING GLOVES! ONLY 5000G A PAIR!

    NOTE: This ask is sponsored by Mettaton.
    Maniklas said:

    How many horns do you have?

    1.0e17.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • ViniVini Member Posts: 3,572 ✭✭✭✭✭

    Maniklas said:

    How many horns do you have?

    1.0e17.
    Are you suggesting you are awfully horny right now?

    Wait, the original question goes "how many horns do you have"... Are you suggesting you are awfully horny all the time?

  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    Vini said:

    Maniklas said:

    How many horns do you have?

    1.0e17.
    Are you suggesting you are awfully horny right now?

    Wait, the original question goes "how many horns do you have"... Are you suggesting you are awfully horny all the time?
    There are no words that adequately describe my reaction to this.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • ViniVini Member Posts: 3,572 ✭✭✭✭✭
    That is a better response that what I predicted. Congrats.

    While on that topic, do any of your myriad horns inconvenience usual day-to-day activities?

  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    Vini said:

    That is a better response that what I predicted. Congrats.

    While on that topic, do any of your myriad horns inconvenience usual day-to-day activities?

    Surprisingly, my amount of horns would not fit on the human body unless they were nearly microscopic in size. So, not really. They're too small to really interfere with anything.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • MetronomeFanaticMetronomeFanatic Member Posts: 57 ✭✭
    How much effort and careful thought does it take to update the LOVE chart?
  • Lava_EntityLava_Entity Member Posts: 2,396 ✭✭✭
    can you into tin can
    cease your tomfoolery

  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭
    edited February 22

    How much effort and careful thought does it take to update the LOVE chart?

    I'd forgotten entirely about the LOVE chart. It does take some effort to consider these characters' motivations, their past and present acts, and their general personalities to calculate their LOVE.

    I'll tell you what. Once I finish my OTHER Undertale-related project, I'll do the LOVE Chart again.

    can you into tin can

    No?
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • BrainstormBrainstorm Member Posts: 11,211 ✭✭✭✭✭
    edited February 22
    How long would it take you an average shit?
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
  • Lava_EntityLava_Entity Member Posts: 2,396 ✭✭✭
    what is the origin of the Void
    cease your tomfoolery

  • ¤RunninginReverse¤¤RunninginReverse¤ Member, Friendly Posts: 15,828 ✭✭✭✭✭

    How long would it take you an average shit?

    Why do you ask fuckin' weird questions?

    what is the origin of the Void

    The Void has been around as long as there's been a human world.
    SL_ND_R: __RS_S__N__
    ---
    SOUNDCLOUD
  • BrainstormBrainstorm Member Posts: 11,211 ✭✭✭✭✭

    How long would it take you an average shit?

    Why do you ask fuckin' weird questions?

    what is the origin of the Void

    The Void has been around as long as there's been a human world.
    You asked for shit questions
    "Calm your caps, bro." -Brainstorm

    the following link is the best thing that could happen to you: http://forum.dashnet.org/discussions/tagged/brainstormgame

    Currently managing a large-based forum game.. DashNet RPG! Play it now: http://forum.dashnet.org/discussion/15882/dashnet-rpg-dashnets-greatest-forum-game-of-all-time
    Dashnet RPG Pastebin: https://pastebin.com/6301gzzx
«13456
Sign In or Register to comment.